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LETTER TO THE EDITOR 

Collapse transitions in animals and vesicles 
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Abstract. We discuss the relationship between the solvent model of collapse in strongly 
and weakly embeddable lattice animals, and a model recently inuoduced by Vanderzande 

-and by Stella er uf. We show that there are important qualitative differences in the 
behaviour predicted by these two models in the compact regime. 

Collapse transitions in lattice animals (as a model of branched polymers in dilute 
solution) and in vesicles 'have been studied theoretically by a number of authors. For 
the animal problem, the transition from an expanded to a collapsed state can be 
driven by a cycle fugacity (Demda and Qerrmann 1983), by a contact fugacity 
(Madras et a1 1990, 'Gaunt and fiesia' 1991,. Flesia and Gaunt 1992) or by a solvent 
fugacity (Flesia 1993). In this letter we shall be particularly interested in the latter 
case. The transition in vesicles is controlled by a pressure difference between the 
inside and the outside of the vesicle (Fisher et a1 1991). When the internal pressure 
exceeds the external pressure the vesicle is an expanded object, but it collapses as 
soon as the external pressure exceeds the internal pressure. A connection between the 
transitions in animals and in vesicles has been investigated recently by Vanderzande 
(1993) and by Stella er a1 (1992), and the primary purpose of this letter is to explore 
this connection further. 

The nature of the phase transition for vesicles in hypercubic lattices is rather well 
understood (Fisher et ~11991, Banavar et aI1991). Wefocus on the square (2') and 
simple cubic (2') lattices though many of our results are more generally~applicable. A 
vesicle is a disc in Z', i.e. a self-avoiding polygon and its interior,or a ball in Z3, i.e. a 
plaquette sirface homeomorphic to a sphere, and its interior. We write m for the 
number of edges in the polygon, or for the number of plaquettes in the surface, n for 
the enclosed area or volume, and u,(n) for the number of vesicles per lattice site. We 
can define the generating function A,(x) by the equation 

A.(4 = 2 u,(n)xm (1) 
m 

and it follows from the arguments of Fisher et a1 (1991) that 
d(x) = lim n-l logA.(x) (2) 

n-(D 
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is monotone non-decreasing, continuous, log-convex and almost everywhere differen- 
tiable. Moreover, there exists an xo< 1 such that d(x) is zero forx<xo and positive for 
x>xQ. It follows from numerical estimates of the connective constant for self-avoiding 
walks on the square lattice that in two dimensions xpO.379. The value of the limit 

is determined by the logarithmic derivative of Sa(x), since the order of the derivative 
and limit can be interchanged everywhere that the derivative of d(x) exists. This 
implies that (m)=o(n) for a l lx<xQ,  and (m)-n for almost all x>xo. 

Vanderzande (1993) and Stella et a1 (1992) have noticed that a model involving a 
proper subset of strongly embeddable animals can be mapped into the vesicle 
problem. The subset of animals considered by Vanderzande and by Stella et a1 is the 
set of animals which are dual to a vesicle. That is, each vertex in the animal is replaced 
by its dual cell and the union of these cells must be homeomorphic to a disc in Z’or to 
a ball in Z’. Loosely speaking, the animals have no internal ‘holes’ and, since the 
animals are a subset of the strongly embeddable animals, every pair of adjacent 
vertices are connected by an edge. For brevity, we call this model the disc model. The 
thermodynamics of this model in the ensemble in which the number of vertices of the 
animal is constant is precisely the thermodynamics of the vesicle problem with n 
constant. Hence the disc model has a phase transition. In order to describe this 
transition we now introduce some notation about lattice animals. 

Consider a lattice animal, weakly embeddable in the lattice, with n vertices, e 
edges and with cyclomatic index c. We define a contucf as a pair of nearest-neighbour 
occupied vertices not directly connected by an occupied edge. Similarly we define a 
solvent contact as an edge which joins a vertex of the animal to a neighbouring 
unoccupied vertex. If the number of contacts is k and the number of solvent contacts is 
s, then (using Euler’s relation) 

s = (U- 2)n + 2 -2c - 2k (3) 
where d is the dimension of the lattice. 

In the disc model the number of vertices in the animal corresponds to the area of 
the disc or the volume of the ball and the number of solvent contacts (s) of the animal 
corresponds to the perimeter (m) of the disc or to the area (m) of the plaquette sphere 
bounding the ball. This mapping, together with the results of Fisher et al. (1991), 
shows that in the compact regime (s) = o(n), while for almost all values of x in the 
expanded regime (s)-n.  

We next describe some known results for the solvent models for strongly embed- 
dable animals. In this model for the collapse transition in animals, there is a fugacity 
associated with the number of solvent contacts. Let a&, k) be the number of animals 
with n vertices, s solvent contacts and k contacts. Since for strongly embeddable 
animals k=O, the partition function is 

and the corresponding limiting free energy is 

$(B) = Iim n-l log &.(B). 
n-- 
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It is straightforward to show that the limit exists and that $(p) is convex, monotone 
non-decreasing, continuous and differentiable almost everywhere. This model can be 
mapped into the model studied (using transfer matrix methods) by Derrida and 
Herrmann (1983) and their work predicts a transition at bc= -0.935. 

We now  derive some additional results for the solvent model for strongly 
embeddable animals and compare these results with those for the disc model. Define 
the site perimeter as the number of vertices which are not in the animal but which are 
incident on at least one edge of the lattice which is asolvent contact of the animal. Let 
&(s, m) be the number of strongly embeddable animals with n vertices, site perimeter 
m and with s solvent contacts. Hence a.(& 0) = C, cia@, m).  For the site percolation 
problem, define Pn(p) to be the probability that the origin is in a cluster of n vertices at 
vertex occupation probability p .  Then 

Taking logarithms, dividing by n and letting n go to infinity gives, for p i 0  

$(p)<-log(l-eB)+lim n-DD n-'logPn(l-e@) (9) 

$(p)> -log(l -e"@) + W D D  lim n-' logP"(1- ew). 
and 

(10) 

Since pn is a probability it is bounded above by 1 and hence equation (9) gives 

$(p)s-log(l-e@). (11) 
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Let p. be, the critical probability for site percolation. From Kesten (1982, Theorem 
5.2, p. 98), given p>$ ,  there exists numbers n, 0 and C such that lS-pn(p)S- 

and hence for p >pc zCalI n(d-lYd 

Using this in equation (10) gives for B<(1/2d) log(1 -A) 
$"()a -log(l -e") (13) 

&"() 3 -1ogp,. (14) 

and since % is a non-decreasing function we have forp>(l/zd) log(1-0,) 

Equations (13) and (11) imply that 

while for all B > - - 
$ ( B ) > O .  (16) 

From this, it follows immediately that (s) - n  for almost all p> - - , in contrast to 
the behaviour of the disc model. (In the grand canonical ensemble this implies that 
there is no vertical line in the phase diagram for this model, analogous to the one in 
figure 2 of Vanderzande (1993) for the disc model.) This is an important qualitative 
distinction between the thermodynamics of the two models. It occurs because most 
strongly embeddable animals are non-simply connected while the subset of animals 
considered by Vanderzande and by Stella er af, being dual to discs, cannot have 
'holes'. It is the additional perimeter associated with the 'holes' in strongly embed- 
dable animals which leads to the different n-dependence of (s) in the compact regime. 

For the solvent model for weakly embeddable animals we define the canonical 
partition function 

It is easy to show (by a concatenation argument) that the limiting reduced free energy 

%(B) = l i  n-l log Qn(B) (18) 
-m 

exists and is a convex function of B. Moreover, %(B)  is monotone non-decreasing and 
continuous. For the square lattice, %(-log fi) = log 4 and we have argued that B(p) 
is singular at D = f l C = - l o g ~  (Flesia et nl 1992). (A corresponding singularity is 
thought to exist for the simple cubic lattice.) In addition we can show that %(B)a 
4C/x, where '& is Catalan's constant, so that the free energy is bounded away from 
zero, but we have not rigorously ruled out the possibility that %(B) is a constant for 
Bs -log fi. However, we have estimated the value of %"(), by a ratio analysis of 
exact enumeration data, and find ?F(-0.5)=1.29*0.04 and B 0.7) 1 19kO.06. 

qualitative behaviour'for this model is also different from that of the disc model. 
In summary, we have discussed the relationship of the disc model to the solvent 

models for strongly and weakly embeddable animals. We have shown that the strongly 

These results strongly suggest that S"() <log 4 when j3 < -log J- 2, and hence = .  that the 
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embeddable case is qualitatively different from the disc model in the compact regime 
and we have argued that this is probably also the case for weakly embeddable animals. 
The disc model is of interest in its own right but its behaviour may not be indicative of 
the behaviour of other models of the collapse transition in branched polymers. 

We are pleased to acknowledge helpful conversations with Attilio Stella, Carla Tesi 
and Enzo Orlandini. and financial support from the SERC (grant number GRlG 
05834) and from the NSERC of Canada. 
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